Reflection as a Supportive Component of Team Based Project Management

Darla Domke-Damonte, Ph.D.
Associate Professor of Management / International Programs Liaison
E. Craig Wall Sr. College of Business Administration
Coastal Carolina University
PO Box 261954
Conway, SC 29528 USA
Tel: +1 843 349 2129
Fax: +1 843 349 2455
Email: ddamonte@coastal.edu

J. Kay Keels, Ph.D.
Assistant Professor of Management
E. Craig Wall Sr. College of Business Administration
Coastal Carolina University
PO Box 261954
Conway, SC 29528 USA
Tel: +1 843 349 3688
Fax: +1 843 349 2455
Email: jkeels@coastal.edu

Appropriate Tracks: Educational Innovation, Educational Practice

Paper submitted to the SEINFORMS meeting, Myrtle Beach, SC, October 4-5, 2007
Reflection as a Supportive Component of Team Based Project Management

Project-based team work is an integral part of many upper-level business school courses, and often these projects comprise a substantial proportion of the individual student’s grades (Bacon, Stewart & Silver, 1999; Hirsch, Shwom & McKenna, 2003). Advantages of team work are said to include: greater motivation and challenge than individual assignments, a context where students can benefit from the interaction with and learning from one another, and a reduction in the instructor’s grading load (Dommeyer, 2006). In addition, team work gives students a forum for discussion of new ideas and concepts, and such collaborative learning is widely considered to be good training for future employment in the business world (Brooks & Ammons, 2003). Hansen (2006) also notes that in the current business context, a large percentage of organizations utilize various types of teams in the workplace. Furthermore, employers view teamwork and collaboration as crucial work skills (Tarracone & Luca, 2002).

However, as Dyer (1995, p. 152) noted, “. . . professors may put students into study or project teams and grade the team project but will spend no time at all in helping these students understand how a good team functions and how to manage group problems that arise . . . The end result is that usually a few students take over and get the group paper or project completed while others goof off or slide along and get rewarded for the efforts of others. This leaves many students with a negative feeling about group activities as they leave school and go into the work force.” This challenge is further exacerbated because often the project represents a significant portion of the individual student’s course grade. Consequently, the effective functioning of the formed groups is crucial to the student’s individual success in the course. While the choice or assignment of team membership can be, for the most part, under the instructor’s control, the internal functioning of the group cannot since groups mutually agree upon their own meeting
times, their own meeting places, their own schedules and their own work processes, most of which is beyond the instructor’s control or view. Obviously, the instructor cannot observe every group’s process and functioning (May & Gueldenzoph, 2003).

Another fairly consistent concern about having students work in teams to produce a single team project paper or presentation is how to fairly assess the contributions of individuals in the team and assign grades. One solution to this problem has been the use of peer evaluations. “Peer evaluation is the process of having the members of a group judge fellow members on specified traits, behaviors, and achievements” (Sherrard & Raafat, 1994, p. 43). Peer evaluation has received much attention in the literature. It has its proponents (e.g., Gueldenzoph & May, 2002) and its critics (e.g., Bacon, Stewart & Silver, 1999). Studies have focused on the outcomes of peer evaluation as well as the process; i.e., what happens because of peer evaluation and how it is done.

One thing that is sure is that the final team work product is neither an adequate nor an accurate reflection of the effort of individual team members. Nor is the post hoc peer evaluation via a format prescribed by the instructor. With instructor-devised measures, students often respond either too positively (not wishing to offend anyone), too negatively (taking the opportunity to work out frustrations or personal issues), or exactly at the mid-point (assessing everyone’s work and effort as equal). Some studies have documented instances of gender- or minority-based bias (Johnson & Smith, 1997). Because the assessment instrument is instructor-devised, students are often pre-occupied with trying to guess what the instructor wants them to say, and they are not really sure how to use the instrument to reflect accurately what went on in the group, or they perceive the evaluation sheet be something that should be dispatched
summarily, rather than carefully considered. In the studies reviewed for this project, none involved student-developed assessment instruments or methods.

We introduce the concept of comparative reflection as a way to further explore the manner in which team process evolves within the team, and we sought to identify whether a comparison between reflection through the articulation of explicit group process norms and an internally team developed and approved team member evaluation process resulted in the identification of a different set of process expectations than did reflection on implicitly held group process norms not specifically articulated within the group. Then we sought to identify whether the internally developed team member evaluation tool completed as an outcome of the explicit group process was more effective in evaluating team member contributions to process and content of the work product than was a professor developed team member evaluation tool.

In the following paragraphs, a literature review integrating control theory with shared mental models work is presented, basic hypotheses are developed, the methods used in the present study are discussed, the results of the analysis described, and discussion is provided of the impact and future direction of this research stream.

LITERATURE REVIEW

Control Theory, Shared Mental Models, and Team Process

At the core of team-based project assignments is the desire for students to not only interact critically with the materials under consideration, but to do so in a simulated organizational setting, the work group. As such, it is crucial to identify how the process of the work group may affect performance in team-based projects. Since the professor cannot normally be present during all of the team meetings and interactions, understanding how the group
remains on task and attentive to process is all the more important to the realization of both the goals mentioned above. Control theory may help to explain this process.

Control theory initially considered the organization as the appropriate unit of analysis (Ouchi, 1979; Eisenhardt, 1985); however, more recent work has drawn the focus of analysis to the smaller work group level (Piccoli & Ives, 2003), such as project teams (Kirsch, 1997). Kirsch (1997: 216) studied control in the development of IS projects, and defined control “as attempts to ensure that individuals working on organizational projects act according to an agreed upon strategy to achieve desired objectives.” Levels of control, though, may differ greatly. Eisenhardt (1989) stressed the difference between formal behavioral controls and formal outcome controls, and noted that behavioral controls on work implies the articulation of specific policies and procedures, which if followed, lead to the hoped for outcomes; formal outcome controls, on the other hand, relate to the product at the conclusion.

Certainly professors provide student teams with guidance on the outcomes of what the team project assignment should be when it is finished (page length, presentation format, organization, structure, analysis to be included, etc.), but limited guidance is often provided about how to enact behavioral control within the group. As Dyer (1995, p. 152) noted, “..professors may put students into study or project teams and grade the team project but will spend no time at all in helping these students understand how a good team functions and how to manage group problems that arise… The end result is that usually a few students take over and get the group paper or project completed while others goof off or slide along and get rewarded for the efforts of others. This leaves many students with a negative feeling about group activities as they leave school and go into the work force.” As such, outcome controls are clearly provided by the supervising professor, but much about what happens to get to the outcome is not
controlled through such formal mechanisms. Limited attention to peer evaluation, and to expulsion or other group problem handling may be the exception to this rule. Kirsch (1997: 236) noted, “While coordinating task-related activities is obviously important, the results of this study suggest that individuals also exercise control to foster relationships in order to engender cooperation and elicit individual cooperation.”

Clearly then it is important to understand how control is exercised at the behavioral level through informal means as well as formal means. Kirsch (1997) and Eisenhardt (1985) suggested that attention to informal control provided attention to people and social strategies. Jaworski (1988) noted that these measures are often undocumented and happen at both the clan (group) level and self (individual) level. According to Kirsch (1997), these clan level processes involve socialization to assist the group in enacting and preserving processes and behaviors that are appropriate to group functioning. In a semester long project, teams are created and dissolved in a very short time period, yet much is often expected from the teams in that small time period.

How do such processes happen within a semester-long team based project? To jumpstart the process, professors often prescribe the group size and either assign the group membership or provide constraints to class members in their own group formation. In many cases students are simply expected to be able to enact a “successful” process of team work without any further guidance (Hansen, 2006; Bacon, et al., 1999). As one example of how limited the coaching and mentoring of teams can be, Bolton (1999: 232) found that 72 percent of instructors in the business school at San Jose State University assigned students to teams in at least one class, but that 81% gave “modest, limited, or no support to students assigned to teams.” The research on shared mental models may provide a foundation upon which to view this process.
Shared mental models have been applied to team work for many years. Stronger team performance has been attributed to shared mental models (Mathieu, Goodwin, Heffner, Salas, & Cannon-Bowers, 2000; Gurtner, Tschan, Semmer, & Nägele, 2007). While Mathieu, Goodwin, Heffner, Salas, and Cannon-Bowers (2000: 274) note that many different mental models may simultaneously exist on a team, they note “team members must hold shared conceptions of how the team interacts. These models describe the roles and responsibilities of team members, interaction patterns, information flow and communication channels, role interdependencies and information sources.” As Bettenhausen (1991) notes, the combination of a true concern for one another and the collective commitment to the project task at hand will contribute to the best teams.

In addition, Gurtner, Tschan, Semmer, and Nägele (2007) advocated reflection as a tool to help maintain focus on both task and personal interaction within the project team. They noted (Gurtner, et al., 2007; 128 – 129), ‘Reflection can be conceived as a group discussion, or can also be done by each group member.” The outcome of reflection was a stronger commitment to both process and task and an ability to be more adaptive on the part of the group as a whole. These outcomes were associated positively with team outcomes. Since a team-based reflection process in which the team members all collectively define and agree to a contract of behavioral norms shared by all team members for the duration of the team existence and since as they design their own evaluation process based on that contract, they will have engaged in greater commitment and clarity about the rest of the members of the team, we propose the following hypothesis:

Hypothesis 1: Teams which developed a team contract will have higher Explicit Agreement of Importance than will teams without an explicitly agreed upon contract.
In addition, we propose that the task of the reflection upon articulating tacit expectations for group interaction during the process of group formation can provide a legitimate baring of the soul of previous experience with shirking, free riding, and other behaviors experienced in low performing groups. The very fact that groups go through this process builds solidarity and commitment across the team. Discussing the experiences and processes of what is important to one within group settings can result in an elevated commitment across the entire team. As a result, we propose that beyond what Gurtner et al. (2007) proposed in their study, the connection made between team members on this process enables a level of agreement that is transferable across the project. As such, we propose that the development of this reflection at the team level provides a stronger commitment by the team to the task and process outcomes of the team. As the connection between team effectiveness and shared mental models has been well established (Gurtner, et al. 2007; Mathieu, et al. 2000, among others), we also propose the following additional hypotheses as an exploratory extension of the robustness of the construct of shared reflection.

Hypothesis 2: Groups who have developed explicit agreement on acceptable team behaviors will demonstrate higher team effectiveness than will those who individually articulated their perceptions of acceptable team behaviors.

Hypothesis 3: Team work satisfaction will be higher among students in groups that developed an explicit statement of acceptable team behaviors than it is among those who are a part of teams in which individuals articulated their own perceptions.

Hypothesis 4: Teams which developed explicit team contracts will score higher on task success than will those who only developed individual reflections.

In addition, team member evaluation has been noted to be important for team satisfaction with group projects (Bolton, 1999). Candy et al. (1994) discuss the importance of students becoming lifelong learners and cite both peer-assisted and self-directed learning as being characteristic of encouraging the process. Boud et at. (1999) points out several other attributes or
skills associated with peer learning which are considered critical both to academic pursuits and work-related experiences; i.e., collaboration, teamwork, critical enquiry and reflection, communication skills, and learning to learn. Searby and Ewers (1997) suggest that the most significant reason for using peer assessment is that it helps students to think critically and to take control of their learning, so that they are less dependent on the lecturer. Gatfield (1999) found a very high level of student satisfaction with a group assessment process in general. Therefore, we propose the following hypothesis:

Hypothesis 5: Teams that developed explicit team contracts and their own internally developed team member evaluation tools will perceive higher Effectiveness of Team Member Assessment Tools.

METHODS

Data were gathered from 145 students working in 34 student teams on semester-long projects with multiple assignments in one of 6 sections of the undergraduate capstone strategic management course at a regional university in the Southeastern United States. Two professors each taught three of these six sections. Teams were created by the students during the first meeting of the course, subject to the constraint of making teams of between 4 – 6 members and having cross functional representation on each team, though one team had only 3 team members because a team member dropped the course.

Research Concerns:

Our primary research questions were:

- Do explicitly developed team contracts result in greater team agreement on important team behavioral dimensions than do aggregations of implicit, unarticulated team member perceptions?
- Do teams with an explicit behavioral contract benefit from better team effectiveness, team environment, and team work satisfaction?
- Do teams with an explicit behavioral contract benefit from higher task success?
- Do teams with an explicit behavioral contract perceive internally developed team member evaluation processes to be more effective than those teams who use an outside developed evaluation tool?

Process

In our attempt to understand the extent to which explicitly developed team contracts created more shared expectations for group interaction, student teams were assigned one of two treatments:

1. **Shared Team Reflection** - Students on one half of the teams were asked to meet together as a team to discuss and agree upon what they collectively believed to be the behaviors and commitments that would guide the team’s behavior and the penalties for breaking the policies that they collectively set. These teams were each required to draft a team contract, which clearly articulated the outcomes of this discussion, and which each person signed. In addition, each of these groups designed their own team member evaluation form, which was used to assess performance of the team members after the major deliverables were turned in during the course;

2. **Individual Reflection on Team Behavioral Issues** - Students on the other half of the teams were asked to write a 2 – 3 page essay in which they articulated the behaviors and commitments that the student believed should be followed by his or her team and what penalties should be matched with violating those behaviors and commitments throughout the course of the semester. These students were expressly told not to interact with
anyone in the completion of this assignment. These students did not design any specific evaluation form, though they were asked to weight how important they believed each of the behaviors they noted were. These teams were assigned an instructor-developed team member evaluation tool to evaluate team member performance after the major deliverables were turned in during the course. They were not provided with this assessment tool prior to its use after the first major deliverable of the course.

Teams assigned to each treatment randomly across each professor and each section, so that there was no obvious bias by time of day, order of team creation, or other effects. Thus, a total of 17 teams were assigned to each treatment.

After the completion of the first major team deliverable during the semester, teams completed in class their respective team member evaluation tool (the teams who went through Treatment 1 completed their internally developed team member evaluation tool and the teams who went through Treatment 2 completed an instructor-developed team member evaluation tool which had been used in previous semesters). In addition, each team member was asked to complete an online survey after having completed the in-class team member evaluation. The online survey covered a number of issues, including team effectiveness, team environment, team work satisfaction, and effectiveness of team member assessment, among others.

Team Effectiveness was assessed on a seven-point Likert scale using the nine-item scale developed by Forrester and Taschian (2006). A single factor resulted (eigenvalue = 5.17; variance explained = 64.6%), with very high reliability $\alpha = .919$, which was close to the $\alpha = .90$ reported by Forrester and Taschian (2006).

Team Work Satisfaction was assessed using the three-item scale developed by Forrester and Taschian (2006) and an additional question, “This team experience is one of the best I have
ever had,” was added by the authors to provide some measure of external relevancy to the rating of team work satisfaction. This measure was assessed on a 6-point Likert scale as in Forrester and Taschian (2006). A single factor was identified (eigenvalue = 3.48; variance explained = 87.095%), and reliability was very high at $\alpha = .94$, which was very close to the reliability of $\alpha = .96$ obtained by Forrester and Taschian (2006).

Effectiveness of Team Member Assessment was assessed by two questions, which were each assessed on a 5-point Likert scale: (1) How well does the team member evaluation sheet that you completed in class enable you to accurately evaluate the contributions of your team members to the team’s task accomplishment?; and (2) How well does the team member evaluation sheet that you completed in class enable you to accurately evaluate the contributions of your team members to the team’s work processes? Reliability of these two items was very strong at $\alpha = .911$, and thus the scores reported on each question was summed to create the scale we called Effectiveness of Team Member Assessment.

Task Success was defined as the team grade on the project deliverable. Team grades on this interim deliverable (a 20-page overview and analysis of company and industry) ranged from 55 to 95 (of a total of 100 possible points).

Coding:

To address the first research question of this preliminary study, “Do the individually articulated expectations for team-level behaviors match the explicitly developed team contracts?,” we content analyzed the documents developed through both Treatment 1 and Treatment 2. Content analysis has been recommended as a method for studying text documents in order to identify categories and then to count the occurrence of those categories in the respective documents (Silverman, 1993). Weber (1990) noted that there is a debate about
whether a priori developed (assumed) categories or inferred categories (those evoked from the producers of the textual material) are preferred, and concluded that the use of inferred categories often results in different, incomparable categories as the categories themselves are developed differently across different documents. With this concern in mind, each assignment (from both Treatment 1 and Treatment 2) was content analyzed individually to determine the criteria on which team members thought that they and their peers should be evaluated. For each instrument, whether developed as a team or written as an individual, each evaluation criterion noted was recorded by a main coder. As criteria were expressed in multiple ways across all documents, they were combined subsequently into common categories. For example, *punctuality* might have been expressed by such words or phrases as “timeliness” or “be on time” (See Table 1). Resulting category lists from the team instruments and the individual instruments were then combined to yield a single list of 14 inferred evaluation dimensions. These 14 dimensions included: participation, punctuality, preparation, cooperation, dependability, enthusiasm, focus, respect, help, quality of work, communication, professionalism, honesty and diligence. Frequencies of occurrence for each dimension were determined in order to rank the dimensions (See Table 2). For the purposes of ranking, team responses were recorded separately from individual responses in order to determine if there were differences between teams and individuals in the frequencies with which the various dimensions were named in the evaluation instruments. Further, as this study was exploratory in nature, and as the inferred categories developed in this study were developed across both types of documents, the resulting category structure, noted in Table 2 was deemed appropriate for analysis. In addition, interrater reliability was assessed through the coding of a subsample of the Treatment assignments by a second coder, using the coding categories and examples developed by the original coder. Reliability
uncorrected for chance was .85, but when corrected for chance, using Cohen’s kappa, the reliability was .8069. As this was above the recommended .70 level, the interrater reliability was deemed satisfactory.

Using the established dimensions, a second round of content analysis was done on each individual and each group document in order to calculate intrateam agreement on each dimension. A binary coding procedure was used. For each individual document, the dimension was scored 1 if it was mentioned and 0 if it was not. A similar procedure was followed for each group document. The resulting measure of agreement, Explicit Agreement of Importance, was defined as the extent to which team members agreed that the behaviors noted in the aforementioned content analysis were important. We calculated this measure for those who completed Treatment 2 (Individual) as $EAI_{xj} = 1 - \frac{(n_{xj} - X_{ij})}{n_{xj}}$, where

- EAI = Explicit Agreement of Importance;
- x = Dimension of Team Behaviors noted in Content Analysis;
- j = Team ($j = 1, 2, 3, \ldots$);
- i = ith team member of team j ($i = 1, 2, \ldots 6$);
- and where coding is such that $x = 1$ if mentioned and $x = 0$ if not

For those who completed Treatment 1, it was assumed that if the team agreed upon the dimension within its team contract, that all had agreed upon it. Thus, Overall Explicit Agreement of Importance was derived as the sum of all of the respective team’s score on the individual dimensions, or $OEAI = \Sigma (EAI_x)$, for each of the teams who had completed Treatment 1 or Treatment 2. This enabled a single aggregate measure of the extent to which the respective team agreed upon the categories that were mentioned in the team (or combined individual) documents.
RESULTS

The results of the study provide strong support to the hypotheses posed. The first hypothesis suggested that teams which developed an explicit contract would have higher explicit agreement on important team behaviors than would teams which did not do so. Hypothesis 1 was supported. The t-test between total Total EAI scores for the two groups noted significantly higher Explicit Agreement of Importance on Teams with a Group Developed Contract than on those without a Group Developed Contract. ($t = -3.31; p < .01$), with teams that developed explicit contracts noting on average 7.17 of the 14 dimensions, while those teams that did not develop explicit contracts noting on average only 5.73 of the dimensions. These results support the earlier work of Gurtner et al. (2007) and Mathieu et al. (2000).

In addition, Hypothesis 2 was supported. Perceived Team Effectiveness was higher for those students who were in teams who had developed explicit agreement on acceptable team behaviors ($F = 6.649; p = .011$), with the average 40.31 for individual versus 44.07 for group.

Hypothesis 3 was supported ($F = 5.324; p = .022$). Those from teams which had developed an explicit statement of acceptable team behaviors reported a higher level of work satisfaction than those who developed individual reflections only (22.68 versus 20.27).

Results of a t-test indicated weak support for Hypothesis 4. Teams which developed explicit team contracts scored higher on task success, with average interim deliverable scores of 79.4 for the teams that did not develop such contracts versus an average of 84.8 for those teams that did develop explicit group contracts ($t = -1.47; p = .075$).

Results indicate that Hypothesis 5 was supported, with Effectiveness of Team Member Assessment higher for those who had completed Treatment 1, in which they worked together as a team to define explicitly behaviors and penalties appropriate for the team, and discussed and
developed a team member evaluation tool that fit this contract \(F = 9.323, p = .003 \), with the mean Effectiveness of Team Member Assessment 7.6 for those who had completed the professor-developed tool, versus 8.46 for those who had completed the team-developed tool. While the fact that the teams completing Treatment 2 had not seen the instrument before completing it may have had some effect on the process, it is important to note that the evaluation of that tool on its own still yielded a mean score of 7.6 on a possible 10-point scale.

DISCUSSION

The results of this preliminary study of group versus individual reflectivity support the positive benefit of the shared mental models that seem to emerge with this assignment. Not only are individuals asked to commit more mentally to the project, but as a part of the very assignment of mentally committing and physically signing the behavioral contract, they are engaging in clan-type behaviors (as suggested by Kirsch, 1997).

Of course this project is subject to the limitations of a being conducted in a single university setting; however, controls across different professors indicated no significant differences across their classrooms. We did not receive 100% participation in the survey response, yet there was no indication of a serial bias in nonresponse by any particular demographic in the six classrooms.

The results of this preliminary study provide some interesting suggestions for practice. They reinforce the need for professors to go beyond making the team assignment and allowing or requiring the students to “figure it out” as a way to prepare them for the real world. The results also suggest the primacy of getting students or others involved in short-life projects with complex demands engaged in an active deliberation on and commitment to group developed behavioral controls. For professors, it also points out that in an age of mass customization, it
may be more important to enable students to choose, collectively, how they will be evaluated, and then to hold them accountable to that process. In any case, this study opens a number of interesting doors for future research on shared mental models, the role of reflection and comparative reflectivity, and control processes in group function.

WORKS CITED

Table 1
Expressions of Behavioral Dimensions

Participation
- Willingness to work with group
- Attendance (meetings and class)
- Contribution
- Equal contribution
- Input
- Making the most of group meetings
- Equally shared work
- Did all that was asked
- Putting in your time

Dependability
- Ability to assemble
- Make time for group meetings
- Reliability
- Responsibility
- Completion of assigned tasks
- Accessibility
- Availability
- I would work with this person again
- Accountability

Preparation
- Being prepared
- Preparedness
- Prepared for presentations

Punctuality
- Meeting deadlines
- No procrastination
- Time management
- Being on time
- Timeliness
- On time to any group meeting
- Getting work done on time

Cooperation
- Having same expectations as group
- Resolving disagreements
- Flexibility
- Adaptability
- Open mindedness
- Cooperativeness
• Team work
• Your actions affect the group
• Final meetings to wrap up project
• Open to new ideas
• Ability to work with others
• Flexible and cooperative
• Majority rules
• Teamwork skills
• Cohesion with group
• Compatibility
• Willingness to compromise

Work Quality
• Correctness of tasks
• Pride in work
• Accuracy
• Overall performance
• Work done correctly

Respect
• Consideration of others’ feelings
• Swallow pride
• No violence or threats
• Ethics
• Polite behavior
• Etiquette
• Politeness
• Fairness
• Sensitivity
• Respectful of others’ opinions
• Appropriate meeting behavior
• Friendliness

Communication
• Listening
• Discussing issues as a team
• Effective feedback
• Listening with an open mind
• Responds to email and phone calls
• Listened and followed directions

Enthusiasm
• Positive attitude
Focus
- Staying on task at meetings
- Focus on project
- No cell phones in meetings
- On task and focused
- Avoiding non-school personal issues

Give/Receive Help
- Accept help
- Being helpful
- Providing support to teammates
- Willingness to help
- Understanding of others’ need for help

Professionalism
- Intelligent work ethic
- Creative thinking
- Knowledgeable
- Creativity
- Problem-solving new ideas
- Appropriate attire
- No plagiarizing
- Dressed appropriately for presentations
- Always cite sources
- Competitiveness

Honesty
- Trustworthiness

Diligence
- Dedication
- Commitment
- Effort
- Success driven
- initiative
- Goal oriented
- Conscientiousness
- Willingness to work
- Perseverance
- Work until the assignment is complete
- Hardworking
- extra effort
Table 2
Evaluation Dimension Rankings

<table>
<thead>
<tr>
<th>Evaluation Dimension</th>
<th>Team</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rank</td>
<td>Frequency</td>
<td>Rank</td>
<td>Frequency</td>
<td></td>
</tr>
<tr>
<td>Participation</td>
<td>1</td>
<td>26</td>
<td>1</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>Punctuality</td>
<td>2*</td>
<td>15</td>
<td>3</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Cooperation</td>
<td>2*</td>
<td>15</td>
<td>6</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Dependability</td>
<td>2*</td>
<td>15</td>
<td>2</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td>Quality of Work</td>
<td>3</td>
<td>12</td>
<td>5</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>Respect</td>
<td>4</td>
<td>11</td>
<td>7</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Help</td>
<td>6</td>
<td>9</td>
<td>12*</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Enthusiasm</td>
<td>7</td>
<td>7</td>
<td>10</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Diligence</td>
<td>8</td>
<td>6</td>
<td>9</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Focus</td>
<td>9*</td>
<td>5</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td>9*</td>
<td>5</td>
<td>4</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Professionalism</td>
<td>10</td>
<td>3</td>
<td>12*</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Honesty</td>
<td>11</td>
<td>1</td>
<td>12*</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

GROUP

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Not Mentioned</th>
<th>Explicitly Mentioned</th>
<th>INDIVIDUALLY DEVELOPED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Not Mentioned</td>
</tr>
<tr>
<td>Participation</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Punctuality</td>
<td>4</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Cooperation</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Dependability</td>
<td>6</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Quality of Work</td>
<td>9</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Respect</td>
<td>3</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Preparation</td>
<td>8</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Help</td>
<td>13</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Enthusiasm</td>
<td>12</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Diligence</td>
<td>11</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Focus</td>
<td>11</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Communication</td>
<td>5</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Professionalism</td>
<td>9</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>Honesty</td>
<td>16</td>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>